

AI for CMR Reporting – Technique Talk III

Al-enabled Reporting for CMR Perfusion Datasets: Uncertainty Assessment and Artifact Detection

Behzad Sharif, PhD

Associate Prof. & Director of CMR Research

Krannert Cardiovascular Research Center

Division of Cardiovascular Medicine

IU Health/IUSM Cardiovascular Institute Indiana University School of Medicine, Indianapolis

May 6, 2022

Declaration of Interest

• I do not have any conflicts to declare.

Background: Reporting in Stress Perfusion CMR

- -Stress perfusion CMR \rightarrow superior modality for detection of vasodilator-induced ischemia for assessment of both obstructive and non-obstructive ischemic heart disease.
- Manual reporting of CMR perfusion images involves reading through 180+ image (first pass of Gd) per study.
- Despite the rapid contrast dynamics and image-quality challenges (low SNR and CNR vs. Cine), recent work has demonstrated the potential of AI/ML to enable rapid fully automatic analysis of CMR perfusion datasets.¹⁻³
- On modern platforms, advanced non-rigid MoCo enables a faster workflow.⁴
- 1. Sandoval et al. Proc of ISMRM 2019;27:1230
- 2. Scannell et al. JMRI 2020;51(6):1689-1696
- Xue et al. Radiology: Al 2020;2(6)
 Xue et al. MICCAI 2009;741-9

Absence/Presence of Enhancement Persistence (severity) of Defects: >5 frames? >10 frames?

Focus: Al-enabled Reporting for CMR Perfusion Datasets

• Uncertainty Assessment for AI-based Segmentation of Stress Perfusion CMR Using Test-time Analysis

 Automated Detection of Motion-induced Dark Rim Artifacts in Stress Perfusion CMR Enabled by AI-based Segmentation

Focus: AI-enabled Reporting for CMR Perfusion Datasets

- Uncertainty Assessment for AI-based Segmentation of Stress Perfusion CMR Using Test-time Analysis
 - Improving robustness to variations in pulse sequence parameters
 - Enabling human-in-the-loop AI by detecting uncertain segmentation
 - Enabling retrospective analysis of old datasets acquired with subpar quality

Joint work with PhD Student Dilek M. Yalcinkaya

Background

- Segmentation of perfusion CMR datasets has been proposed using Deep Neural Networks (DNNs)^{1,2,3}
- Despite their impressive performance, however, DNNs may suffer from miscalibration where potential overconfidence may be implied on the segmentation results⁴
- Uncertainty assessment can offer improved interaction with the expert-user and provide insights to the "black box" nature of the DNNs

McCrindle et al., Radiology: Al

Objective

Develop a test-time confidence measure for DNN-based segmentation in stress CMR

1. Sandoval et al. Proc of ISMRM 2019;27:12303. Xue et al. Radiology: Al 2020;2(6)2. Scannell et al. JMRI 2020;51(6):1689-16964. Guo et al. ICML 2017;arXiv1706.04599

Contributions

- patch3D-UNet: a patch-level UNet-based deep learning method using spatially sliding 2D+time patches to segment dynamic CMR perfusion images
- segmentation uncertainty map extraction and localization with test-time analysis

Datasets

- test on held-out data from two institutions obtained at distinct field strengths and pulse sequences

	Training/Validation	Test Set I	Test Set II
Institution	Medical Center #1	Medical Center #1	Medical Center #2
Field strength	3 T	1.5 T	3 Т
Pulse sequence	SR-prepared FLASH	SR-prepared EPI-GRE	SR-prepared bSSFP
No. of patients	69	20	40
No. of females	62 (90%)	20 (100%)	10 (25%)
No. of rest scans	62	24	0
No. of stress scans	65	14	40
Age (years)	56.61±11.56	46.7±11.64	60.1±14.29
BMI (kg/m²)	26.8±5.31	24.24±4.08	30.28±5.55
Suspected Obstructive CAD (%)	0%	0%	100%
Suspected INOCA (%)	100%	100%	0%
Normal Control (%)	12%	0%	0%

Methodology: Patch-level training

- The data processing pipeline for the proposed patch-level approach:

We use patch-level spatio-temporal processing

- Motion-corrected 2D+time perfusion image series is decomposed into patches using a spatial sliding window

* Yalcinkaya et al. IEEE Proc EMBC, Nov 2021
* Yalcinkaya et al. 2022, Under Review.

Methodology: Patch-level training

- The data processing pipeline for the proposed patch-level approach:

- Motion-corrected 2D+time perfusion image series is decomposed into patches using a spatial sliding window
- Patch3D-UNet detects the myocardial pixels within each patch by processing the dynamic patches
- The segmented patches are combined to yield the result

* Yalcinkaya et al. IEEE Proc EMBC, Nov 2021* Yalcinkaya et al. 2022, Under Review.

Methodology: Effect of several data augmentation techniques

intensity modulation and contrast enhancement

Segmentationvariant augmentation

Segmentationinvariant augmentation (proposed aug.)

Results: Conventional vs. Proposed Data Augmentation

Machine-generated MBF quantification for conventional and proposed augmentation at 3 T
 Better correlation and agreement with the proposed augmentation

Method: Uncertainty mapping using test-time patch sliding

- During test time, multiple patches are extracted from the perfusion series
- Multiple inferences with slight differences in the location of the ROI (i.e., orange volume)
- Next, these solutions are incorporated to create the U-map
- * Yalcinkaya et al. IEEE Proc EMBC 2021; 4078-84

Results: A patient with single-vessel CAD (training: FLASH; test: SSFP)

* Yalcinkava et al. IEEE Proc EMBC 2021; 4078-84

Results: Cumulative uncertainty in 3 T test set (n=40)

- Define uncertainty as the **per-pixel energy in the U-map**: $U_{pp} = \frac{||U-map||_2^2}{\sum_x S(x)}$ no. of pixels in segmentation S(x)
- Baseline model Patch2D-UNet: Patch-level network trained with 2D patches
- Uncertainty reduced in 3D vs. 2D and proposed vs. conventional augmentation:

* Yalcinkaya et al. 2022, Under Review.

Uncertainty Quantification & Localizations Enables Human-in-the-loop A.I.

- Patch3-UNet outputs the myocardial contours and U-map
- Patch3-UNet highly uncertain in the inferolateral wall (resulting in non-contiguous segmentation)
- Segmentation is split into subsegments
- Uncertainty is localized
- The U-map can be used to alert the end-user to correct/exclude this subsector

* Yalcinkaya et al. IEEE Proc EMBC 2021; 4078-84
* Yalcinkaya et al. 2022, Submitted.

Uncertainty Quantification & Localizations Enables Human-in-the-loop A.I.

Another Challenging Case:

* Yalcinkaya et al. IEEE Proc EMBC 2021; 4078-84* Yalcinkaya et al. 2022, Submitted.

Enabling retrospective analysis of old datasets acquired with subpar quality

 Applying ML-based automatic analysis to old datasets which have 10+ years of f/u data has the potential to lead to new insights w/o the need for often-prohibitive costs of a prospective study w/ modern seqs.

- 15-year old dataset acquired at 1.5T using a GRE-EPI sequence w/ no ground truth (training: 3T SR-FLASH)

Enabling retrospective analysis of old datasets acquired with subpar quality

- Applying ML-based automatic analysis to old datasets which have 10+ years of f/u data has the potential to lead to new insights w/o the need for often-prohibitive costs of a prospective study w/ modern seqs.
- 15-year old dataset acquired at 1.5T using a GRE-EPI sequence w/ no ground truth (training: 3T SR-FLASH)
- U-map detects acquisition error (#1; basal)

Enabling retrospective analysis of old datasets acquired with subpar quality

- Applying ML-based automatic analysis to old datasets which have 10+ years of f/u data has the potential to lead to new insights w/o the need for often-prohibitive costs of a prospective study w/ modern seqs.
- 15-year old dataset acquired at 1.5T using a GRE-EPI sequence w/ no ground truth (training: 3T SR-FLASH)
- Distribution of normalized U values across 110 slices
 Red bars show the distribution of inaccurate segmentations using visual inspection after machine analysis

→ 55% of analyzed slices are clustered in a "low-uncertainty group" and did not include any segmentation errors upon visual inspection.

Focus: Al-enabled Reporting for CMR Perfusion Datasets

- Uncertainty Assessment for Al-based Segmentation of Stress Perfusion CMR Using Test-time Analysis
 - Improving robustness to variations in pulse sequence parameters
 - Enabling human-in-the-loop AI by detecting uncertain segmentation
 - Enabling retrospective analysis of old datasets acquired with subpar quality

Joint work with PhD Student Hazar B. Unal

The Dark Rim Artifact (DRA)

 Dark Rim Artifact (DRA) is an important challenge in CMR perfusion studies with Cartesian sampling.

 DRA mimics true perfusion defect; confounds both qualitative and quantitative analyses.

 Clinically important to detect DRA in CMR image series for accurate diagnosis of subendocardial ischemia.

Background

- The two main causes for DRA:
 - 1) Gibbs ringing (k-space truncation¹)
 - 2) Cardiac motion²
- Previous studies mainly focused on *removing* DRA:
 - with post-processing³⁻⁵
 - o with optimized acquisition including non-Cartesian trajectories⁶⁻⁸
- The only study⁹ done so far on <u>detecting DRA</u> is not automatic.
- Key idea: if a subendo defect "changes" by a pprox25 ms change in acq. temporal window ightarrow DRA

Di Bella et al: MRM 2005
 Storey et al: MRM 2002
 Ferreira et al: JCMR 2009
 Kellner et al: MRM 2016
 Lee et al: MRM 2021

6. Salerno et al: MRM 2013 7. Sharif et al: MRM 2014 8. Zhou et al: JMRI 2017 9. Ta et al: JCMR 2018

Key Idea: Multiple reconstructions of each frame

Key Idea: Multiple reconstructions of each frame from partially-masked k-space

Key Idea:

Leveraging ML-based segmentation to automatically generate Recon Temporal Variability maps

KRANNERT CARDIOVASCULAR RESEARCH CENTER

Representative Results: Healthy Volunteers

Stress Perfusion Series

Selected Time Frame

Recon TempVar Map

Detected DRA Segments

CNN

Example Results: Single-vessel obstructive CAD (animal)

— Adenosine-stress first pass perfusion in a canine with epicardial stenosis (90% LAD)

Septal DRA detected accurately

Example Results: Patients with Global Subendocardial Defect

Stress Perfusion Series

Selected Time Frame

Recon TempVar Map

No DRA is detected

0

LGE

Overall Artifact-detection Performance (per segment)

- Determining the "optimal" TempVar threshold: trade off between sensitivity & specificity
- Preliminary results in n=26 subjects

 \rightarrow aim is to minimize the likelihood of classifying a segment as DRA when it's a true defect

	AUC	95% CI	Sensitivity at 95% Specificity
per AHA segment	0.83	0.81 to 0.85	62%

Automatically detecting >50% of true dark-rim image artifacts with near-perfect specificity

Conclusions: Uncertainty reporting in ML-based analysis of perfusion CMR

- Uncertainty assessment may enable a more reliable integration of deep learning-based analysis of stress perfusion images into clinical CMR reporting practice.
- We presented a technique for mapping the uncertainty in ML-derived segmentations of CMR perfusion datasets using a test-time sliding-patch analysis approach.
- As expected, 3D (spatio-temporal) DNN architecture and "advanced" data augmentation reduce uncertainty esp. when test/training data were acquired using different sequence.
- Our proposed U-map measure has practical value in interpreting the ML-derived segmentations specifically by enabling human-in-the-loop quality control of contours & assessing the generalizability to external datasets and/or datasets with subpar image quality.

Conclusions: ML-enabled **artifact detection in reporting** of perfusion CMR

- Currently, there does not exist any fully automatic approach for detecting dark-rim artifacts in CMR perfusion datasets.
- We have proposed a method that leverages ML-enabled automatic detection of the subendocardial contours to automatically detect DRAs.
- Our proof-of-concept study achieved AUC = 0.83 for per-segment DRA detection;
 Enables detection of >50% of DRAs with near-perfect specificity.
- Future work involves testing on a larger patient dataset including true normal controls.

Acknowledgements

Funding Support:

NIH R00-HL124323 NIH R01-HL153430

National Heart Lung and Blood Institute

IUH/IUSM Cardiovascular Institute 🔱

Lilly Endowment INCITE Faculty Scholarship

Lab Members:

Zulma

Dilek

Luis

Collaborators at IUSM, Indianapolis:

Subha Raman, MD Rohan Dharmakumar, PhD Balaji Tamrappoo, MD

External Collaborators:

- Daniel S. Berman, MD; Cedars Sinai, Los Angeles
- Noel C. Bairey Merz, MD; Cedars Sinai, Los Angeles
- Janet Wei, MD; Cedars Sinai, Los Angeles
- Bobby Heydari, MD; Univ. of Calgary, Canada
- Reza Arsanjani, MD; Mayo Clinic, Phoenix

Contact: bsharif@iu.edu

Khalid